Representation is to relate G with a subgroup of GL(7, C).
Defn (O) G is called faithful if kar(g) = {e}?
(i) V is called a G-linear spece. g. v = P(3)(v)
(ii): f: V → W a Grapher linear map is called
g. G → GH(V)
a G-nep (V, W are G-linear spece) if y, G → GL(r, W)
f(g.v) = g. f(v)
g. (g.v.) = g. f(v)
(v) U C V a subspace is called inversiont if,
$$\forall u \in U$$

g. (d) $\forall is$ (alled irreducible if $U = V \& U = fo$ } are
the bully two inversest subspaces.
(v) V is (alled irreducible if $U = V \& U = fo$ } are
the bully two inversest subspaces.
(vi) $\chi(r_S) = trade (f(s))$ is called the character
function.
(vii) V is (alled completely reducible if $V = \bigoplus V$:
(Vi) are irreducible G-spaces.
(hii) G: G → Vi , i=1,2 two representations are
Called equivalent if \exists f: V₁ → V₂ , G-isomorphism
Namely \bigotimes f: V₁→V₁ is a linear is:
 \bigotimes f(g_1(s) v) = f_2(s) f(v). In short
f(g, w) = s. f(w).

If
$$\{e_i\}$$
 is a basis of V_i , $\{\widehat{e_i}\}$ bearing V_i
 $\{e_i^n\}$ is the ded hors $\Rightarrow \widehat{f}_{e_i}^n = \widehat{f}_{e_i}^n f(e_i)$
 $= \widehat{f}_{e_i}^n(f_{e_i}) = \widehat{f}_{e_i}^n(f_{e_i})(\widehat{e_i}, f_{e_i}))$
 $= \widehat{f}_{e_i}^n(f_{e_i}) = \widehat{f}_{e_i}^n(f_{e_i})(\widehat{e_i}, f_{e_i}))$
 $= \widehat{f}_{e_i}^n(f_{e_i}) = \widehat{f}$

Nearly we may write
$$W = \chi_1^* \wedge \dots \wedge \chi_n^*$$

if $\chi_1 \dots \chi_n^*$ are left invariant vector fields.
Such W is adjusted as W_-^* namely left invariant
 W_- form. $(L_g)^* U_-^* = U_-^*$
 W_- another left invariant in form $W_-^* = U_-^*$
for some $C \neq 0$.
Same construction works for C^* - a right invariant
 $W^*_{(S)} = \delta(S) W_{(S)}^*$
Now $U_-^* = \int_{S} U_-^* \int_{S} (W_-^* = W_-^* U_-^*) = K_1^* U_-^*$
 $R_1 \chi_2 = L_X R_3 \Rightarrow L_X^* R_3^* = R_3^* U_-^* \Rightarrow L_2^* (R_3^* U_-^*) = R_3^* U_-^* \Rightarrow$
 $R_1 \chi_2 = L_X R_3 \Rightarrow L_X^* R_3^* = R_3^* U_-^* \Rightarrow L_2^* (R_3^* U_-^*) = R_3^* U_-^* \Rightarrow$
 $R_1 \chi_2 = L_X R_3 \Rightarrow L_X^* R_3^* = R_3^* U_-^* \Rightarrow L_2^* (R_3^* U_-^*) = R_3^* U_-^* \Rightarrow$
 $R_1 \chi_2 = L_X R_3 \Rightarrow L_X^* R_3^* = R_3^* U_-^* \Rightarrow L_2^* (R_3^* U_-^*) = R_3^* U_-^* \Rightarrow$
 $R_1 \chi_2 = L_X R_3 \Rightarrow L_X^* R_3^* = R_3^* U_-^* \Rightarrow L_2^* (R_3^* U_-^*) = R_3^* U_-^* \Rightarrow$
 $R_1 \chi_2 = L_X R_3 \Rightarrow L_X^* R_3^* = R_3^* U_-^* \Rightarrow L_2^* (R_3^* U_-^*) = R_3^* U_-^* \Rightarrow$
 $R_1 \chi_2 = L_X R_3 \Rightarrow L_X^* R_3^* = R_3^* U_-^* \Rightarrow L_2^* (R_3^* U_-^*) = R_3^* U_-^* \Rightarrow$
 $R_1 \chi_2 = L_X R_3 \Rightarrow L_X^* R_3^* = R_3^* U_-^* \Rightarrow L_2^* (R_3^* U_-^*) = R_3^* U_-^* \Rightarrow$
 $R_1 \chi_2 = L_X R_3 \Rightarrow L_X^* R_3^* = R_3^* U_-^* \Rightarrow L_2^* (R_3^* U_-^*) = R_3^* U_-^* \Rightarrow$
 $R_1 \chi_2 = L_X R_3 \Rightarrow L_2^* R_3^* = R_3^* U_-^* \Rightarrow L_2^* (R_3^* U_-^*) = R_3^* U_-^* \Rightarrow$
 $R_1 \chi_2 = L_X R_3 \Rightarrow L_2^* (R_3^* U_-^*) = R_3^* U_-^* \oplus R_3^* \oplus R_3^* U_-^* \oplus R_3^* U_-^* \oplus R_3^* \oplus R_3^*$

eith A is invertible or
$$A \equiv 0$$
.
Pf, Consider ker A & InA.
 Pf_{3} Consider ker A & InA.

Function (Catimans) X on G satisfie
$$\chi(q\sigma g^{-1}) = \chi(e)$$

is called a class function. $Cl(G)$ denotes the total.
 $K_{c}(G) - representation ring (u. r. e the addition R)
 χ : $K_{c}(G) \rightarrow Cl(G)$ is a ring homeomorphism.
Since the computation involves trace. Pick $(e_{i}]$, unitary basis of V
 $\{\widetilde{e}_{e}\} - of W$. $\phi(g)(e_{i}) = e_{i} f_{gi}$ $(e_{i} \dots e_{a})(f_{gi})$
 $\overline{\{\widetilde{e}_{e}\}} - of W$. $\phi(g)(e_{i}) = e_{i} f_{gi}$ $(e_{i} \dots e_{a})(f_{gi})$
 $\overline{\{\widetilde{e}_{e}\}} - of W$. $\psi(g)(e_{i}) = e_{i} f_{gi}$ $(e_{i} \dots e_{a})(f_{gi})$
Now let $[E_{ab}]$: $V \rightarrow W$ $E_{ab}(e_{i}) = \int_{\widetilde{e}_{a}} on f between
 $G = \int_{G} f(g_{i}) \cdot E_{ab} \cdot \phi(g^{-1}) du(g)$ by Schur's Lema
 $G = \int_{G} f(g_{i}) \cdot E_{ab} \cdot \phi(g^{-1}) (e_{i})$ $F_{i} = \int_{G} f(g_{i}) A \phi(g^{-1}) du(g)$
 $F(g_{i}) = G = \int_{G} f(g_{i}) \cdot E_{ab} \cdot \phi(g^{-1}) (e_{i})$ $F_{i} = \int_{G} f(g_{i}) f(g_{i}) = f(g_{i}) - g(g_{i}) = f(g_{i}) - g(g_{i}) - g(g_{i}) = f(g_{i}) - g(g_{i}) = f(g_{i}) - g(g_{i}) = g(g_{i}) = g(g_{i}) - g(g_{i}) = g(g_{i}) = g(g_{i}) = g(g_{i}) - g(g_{i}) = g(g_{$$$

$$\int \chi_{\dot{q}} \overline{\chi_{\dot{q}}} = \int \varphi_{ss} \overline{\varphi_{si}}$$
$$= \int \frac{\delta_{si} \delta_{si}}{\delta_{si}} = 1.$$

Now we may derive the rest of Theorem.